Add like
Add dislike
Add to saved papers

Distribution and differentiation of myeloid-derived suppressor cells after fluid resuscitation in mice with hemorrhagic shock.

OBJECTIVE: To investigate the distribution and differentiation of myeloid-derived suppressor cells (MDSCs) in hemorrhagic shock mice, which are resuscitated with normal saline (NS), hypertonic saline (HTS), and hydroxyethyl starch (HES).

METHODS: BALB/c mice were randomly divided into control, NS, HTS, and HES resuscitation groups. Three subgroups (n=8) in each resuscitation group were marked as 2, 24, and 72 h. Flow cytometry was used to detect the MDSCs, monocytic MDSCs (M-MDSCs), and granulocytic/neutrophilic MDSCs (G-MDSCs) in peripheral blood nucleated cells (PBNCs), spleen single-cell suspension, and bone marrow nucleated cells (BMNCs).

RESULTS: The MDSCs in BMNCs among three resuscitation groups were lower 2 h after shock, in PBNCs of the HTS group were higher, and in spleen of the NS group were lower (all P<0.05 vs. control). The M-MDSC/G-MDSC ratios in PBNCs of the HTS and HES groups were lower (both P<0.05 vs. control). At 24 h, the MDSCs in PBNCs of the NS and HTS groups were higher, while the spleen MDSCs in the HTS group were higher (all P<0.05 vs. control). The M-MDSC/G-MDSC ratios were all less in PBNCs, spleen, and BMNCs of the NS and HTS groups, and were lower in BMNCs of the HES group (all P<0.05 vs. control). At 72 h, the elevated MDSCs in PBNCs were presented in the HTS and HES groups, and in spleen the augment turned up in three resuscitation groups (all P<0.05 vs. control). The inclined ratios to M-MDSC were exhibited in spleen of the NS and HTS groups, and in PBNCs of the NS group; the inclination to G-MDSC in BMNCs was shown in the HES group (all P<0.05 vs. control).

CONCLUSIONS: HTS induces the earlier elevation of MDSCs in peripheral blood and spleen, and influences its distribution and differentiation, while HES has a less effect on the distribution but a stronger impact on the differentiation of MDSCs, especially in bone marrow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app