JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.

Functional mitral regurgitation (FMR) is a significant complication of left ventricular dysfunction and strongly associated with a poor prognosis. In this study, we developed a patient-specific finite element (FE) model of the mitral apparatus in a FMR patient which included: both leaflets with thickness, annulus, chordae tendineae, and chordae insertions on the leaflets and origins on the papillary muscles. The FE model incorporated human age- and gender-matched anisotropic hyperelastic material properties, and MV closure at systole was simulated. The model was validated by comparing the FE results from valve closure simulation with the in vivo geometry of the MV at systole. It was found that the FE model could not replicate the in vivo MV geometry without the application of tethering pre-tension force in the chordae at diastole. Upon applying the pre-tension force and performing model optimization by adjusting the chordal length, position, and leaflet length, a good agreement between the FE model and the in vivo model was established. Not only were the chordal forces high at both diastole and systole, but the tethering force on the anterior papillary muscle was higher than that of the posterior papillary muscle, which resulted in an asymmetrical gap with a larger orifice area at the anterolateral commissure resulting in MR. The analyses further show that high peak stress and strain were found at the chordal insertions where large chordal tethering forces were found. This study shows that the pre-tension tethering force plays an important role in accurately simulating the MV dynamics in this FMR patient, particularly in quantifying the degree of leaflet coaptation and stress distribution. Due to the complexity of the disease, the patient-specific computational modeling procedure of FMR patients presented should be further evaluated using a large patient cohort. However, this study provides useful insights into the MV biomechanics of a FMR patient, and could serve as a tool to assist in pre-operative planning for MV repair or replacement surgical or interventional procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app