JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A pilot cadaveric study of temperature and adjacent tissue changes after exposure of magnetic-controlled growing rods to MRI.

PURPOSE: To test for possible thermal injury and tissue damage caused by magnetic-controlled growing rods (MCGRs) during MRI scans.

METHODS: Three fresh frozen cadavers were utilized. Four MRI scans were performed: baseline, after spinal hardware implantation, and twice after MCGR implantation. Cross connectors were placed at the proximal end and at the distal end of the construct, making a complete circuit hinged at those two points. Three points were identified as potential sites for significant heating: adjacent to the proximal and distal cross connectors and adjacent to the actuators. Data collected included tissue temperatures at baseline (R1), after screw insertion (R2), and twice after rod insertions (R3 and R4). Tissue samples were taken and stained for signs of heat damage.

RESULTS: There was a slight change in tissue temperature in the regions next to the implants between baseline and after each scan. Average temperatures (°C) increased by 0.94 (0.16-1.63) between R1 and R2, 1.6 (1.23-1.97) between R2 and R3, and 0.39 (0.03-0.83) between R3 and R4. Subsequent histological analysis revealed no signs of heat induced damage.

CONCLUSION: Recurrent MRI scans of patients with MCGRs may be necessary over the course of treatment. When implanted into human cadaveric tissue, these rods appear to not be a risk to the patient with respect to heating or tissue damage. Further in vivo study is warranted.

LEVEL OF EVIDENCE: N/A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app