Add like
Add dislike
Add to saved papers

Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial-mesenchymal transition for oral cancer.

Biomaterials Science 2017 Februrary 29
Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT. Combined with Wnt-1 siRNA, PEG-PEI-Ce6 nanoparticle mediated PDT inhibited cell growth and enhanced the cancer cell killing effect remarkably. Our results show the promise of combination therapy of PEG-PEI-Ce6 nanoparticles for delivery of Wnt-1 siRNA along with PDT in the treatment of oral cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app