Add like
Add dislike
Add to saved papers

A fundamental study revisited: Quantitative evidence for territory quality in oystercatchers (Haematopus ostralegus) using GPS data loggers.

A fundamental study by Ens et al. (1992, Journal of Animal Ecology, 61, 703) developed the concept of two different nest-territory qualities in Eurasian oystercatchers (Haematopus ostralegus, L.), resulting in different reproductive successes. "Resident" oystercatchers use breeding territories close to the high-tide line and occupy adjacent foraging territories on mudflats. "Leapfrog" oystercatchers breed further away from their foraging territories. In accordance with this concept, we hypothesized that both foraging trip duration and trip distance from the high-tide line to the foraging territory would be linearly related to distance between the nest site and the high tide line. We also expected tidal stage and time of day to affect this relationship. The former study used visual observations of marked oystercatchers, which could not be permanently tracked. This concept model can now be tested using miniaturized GPS devices able to record data at high temporal and spatial resolutions. Twenty-nine oystercatchers from two study sites were equipped with GPS devices during the incubation periods (however, not during chick rearing) over 3 years, providing data for 548 foraging trips. Trip distances from the high-tide line were related to distance between the nest and high-tide line. Tidal stage and time of day were included in a mixing model. Foraging trip distance, but not duration (which was likely more impacted by intake rate), increased with increasing distance between the nest and high-tide line. There was a site-specific effect of tidal stage on both trip parameters. Foraging trip duration, but not distance, was significantly longer during the hours of darkness. Our findings support and additionally quantify the previously developed concept. Furthermore, rather than separating breeding territory quality into two discrete classes, this classification should be extended by the linear relationship between nest-site and foraging location. Finally, oystercatcher's foraging territories overlapped strongly in areas of high food abundance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app