Add like
Add dislike
Add to saved papers

α-Lipoic acid potentially targets AMP-activated protein kinase and energy production in the fetal brain to ameliorate dioxin-produced attenuation in fetal steroidogenesis.

Our previous studies demonstrated that treating pregnant rats with dioxins, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), targets the pituitary expression of luteinizing hormone (LH) to attenuate testicular steroidogenesis in fetuses, resulting in the imprinting of sexual immaturity of the offspring after reaching maturity. Furthermore, we found that although TCDD disturbs the tricarboxylic acid (TCA) cycle in the fetal hypothalamus, maternal co-treatment with α-lipoic acid (α-LA), a cofactor of the TCA cycle, restores a TCDD-produced reduction in the LH-evoked steroidogenesis as well as the TCA cycle activity in fetuses. However, the mechanism underlying the beneficial effect of α-LA remains to be fully elucidated. To address this issue, we compared the effect of α-LA with that of thiamine, another cofactor of the TCA cycle. As with α-LA, supplying thiamine to dams exposed to TCDD alleviates the reduced level of not only hypothalamic ATP but also pituitary LH and testicular steroidogenic protein in fetuses. However, thiamine had a much weaker effect than α-LA. In agreement with ATP attenuation, TCDD activated AMP-activated protein kinase (AMPK), a negative regulator of LH production, whereas the supplementation of α-LA allowed recovery from this defect. Furthermore, α-LA restored the TCDD-produced reduction in the pituitary expression of the receptor for gonadotropin-releasing hormone (GnRH), an upstream regulator of LH synthesis. These results suggest that α-LA rescues TCDD-produced attenuation during fetal steroidogenesis due not only to facilitation of energy production through the TCA cycle but also through suppression of AMPK activation, and the pituitary GnRH receptor may serve as a mediator of these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app