Add like
Add dislike
Add to saved papers

Stable isotope profiles reveal active production of VOCs from human-associated microbes.

Volatile organic compounds (VOCs) measured from exhaled breath have great promise for the diagnosis of bacterial infections. However, determining human or microbial origin of VOCs detected in breath remains a great challenge. For example, the microbial fermentation product 2,3-butanedione was recently found in the breath of Cystic Fibrosis (CF) patients; parallel culture-independent metagenomic sequencing of the same samples revealed that Streptococcus and Rothia spp. have the genetic capacity to produce 2,3-butanedione. To investigate whether the genetic capacity found in metagenomes translates to bacterial production of a VOC of interest such as 2,3-butanedione, we fed stable isotopes to three bacterial strains isolated from patients: two gram-positive bacteria, Rothia mucilaginosa and Streptococcus salivarius, and a dominant opportunistic gram-negative pathogen, Pseudomonas aeruginosa. Culture headspaces were collected and analyzed using a gas chromatographic system to quantify the abundance of VOCs of interest; mass spectroscopy was used to determine whether the stable isotope label had been incorporated. Our results show that R. mucilaginosa and S. salivarius consumed D-Glucose-(13)C6 to produce labeled 2,3-butanedione. R. mucilaginosa and S. salivarius also produced labeled acetaldehyde and ethanol when grown with (2)H2O. Additionally, we find that P. aeruginosa growth and dimethyl sulfide production are increased when exposed to lactic acid in culture. These results highlight the importance VOCs produced by P. aeruginosa, R. mucilaginosa, and S. salivarius as nutrients and signals in microbial communities, and as potential biomarkers in a CF infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app