JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA-Containing Exosomes Derived from Cancer Cells Treated with Topotecan Activate a STING-Dependent Pathway and Reinforce Antitumor Immunity.

Journal of Immunology 2017 Februrary 16
Danger-associated molecular patterns derived from damaged or dying cells elicit inflammation and potentiate antitumor immune responses. In this article, we show that treatment of breast cancer cells with the antitumor agent topotecan (TPT), an inhibitor of topoisomerase I, induces danger-associated molecular pattern secretion that triggers dendritic cell (DC) activation and cytokine production. TPT administration inhibits tumor growth in tumor-bearing mice, which is accompanied by infiltration of activated DCs and CD8+ T cells. These effects are abrogated in mice lacking STING, an essential molecule in cytosolic DNA-mediated innate immune responses. Furthermore, TPT-treated cancer cells release exosomes that contain DNA that activate DCs via STING signaling. These findings suggest that a STING-dependent pathway drives antitumor immunity by responding to tumor cell-derived DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app