JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Limiting fitness distributions in evolutionary dynamics.

Natural selection works on variation in fitness, but how should we measure "variation" to predict the rate of future evolution? Fisher's fundamental theorem of natural selection provides the short-run answer: the instantaneous rate of growth of a population's mean fitness is its variance in fitness. This identity captures an important feature of the evolutionary process, but, because it does not specify how the variance itself evolves in time, it cannot be used to predict evolutionary dynamics in the long run. In this paper we reconsider the problem of computing evolutionary trajectories from limited statistical information. We identify the feature of fitness distributions which controls their late-time evolution: their (suitably defined) tail indices. We show that the location, scale and shape of the fitness distribution can be predicted far into the future from the measurement of this tail index at some initial time. Unlike the "fitness waves" studied in the literature, this pattern encompasses both positive and negative selection and is not restricted to rapidly adapting populations. Our results are well supported by numerical simulations, both from the Wright-Fisher model and from a less structured genetic algorithm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app