Add like
Add dislike
Add to saved papers

Layer-by-layer assembly of hierarchical nanoarchitectures to enhance the systemic performance of nanoparticle albumin-bound paclitaxel.

Although protein-bound paclitaxel (PTX, Abraxane(®)) has been established as a standard PTX-based therapy against multiple cancers, its clinical success is limited by unfavorable pharmacokinetics, suboptimal biodistribution, and acute toxicities. In the present study, we aimed to apply the principles of a layer-by-layer (LbL) technique to improve the poor colloidal stability and pharmacokinetic pattern of nanoparticle albumin-bound paclitaxel (nab-PTX). LbL-based nab-PTX was successfully fabricated by the alternate deposition of polyarginine (pARG) and poly(ethylene glycol)-block-poly (L-aspartic acid) (PEG-b-PLD) onto an albumin conjugate. The presence of protective entanglement by polyamino acids prevented the dissociation of nab-PTX and improved its colloidal stability even at a 100-fold dilution. The combined effect of high nanoparticle internalization and controlled release of PTX from LbL-nab-PTX increased its cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells. LbL-nab-PTX consistently induced apoptosis in approximately 52% and 22% of MCF-7 and MDA-MB-231 cancer cells, respectively. LbL assembly of polypeptides effectively prevented exposure of PTX to the systemic environment and thereby inhibited drug-induced hemolysis. Most importantly, LbL assembly of polypeptides to nab-PTX effectively increased the blood circulation potential of PTX and improved therapeutic efficacy via a significantly higher area under the curve (AUC)0-∞. We report for the first time the application of LbL functional architectures for improving the systemic performance of nab-PTX with a view toward its clinical translation for cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app