Add like
Add dislike
Add to saved papers

A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut's reagent.

The short lifetime of proteinaceous microbubbles produced using conventional sonication method has hindered their applications in drug delivery and metal removal from wastewater. In this study, we aimed to synthesize stable proteinaceous microbubbles and to demonstrate their reactivity. Our model protein, bovine serum albumin (BSA) was treated with 2-iminothiolane hydrochloride (Traut's reagent) to convert primary amines to thiols before the synthesis of microbubbles. Microbubbles produced with the Traut's reagent-treated BSA (BSA-SH MBs) were initially concentrated at median sizes of 0.5 and 2.5μm. The 0.5μm portion quickly vanished, and the 2.5μm portion gradually shrank to ∼850nm in ∼3days and became stabilized afterward for several months under 4°C. Characterizations of BSA-SH MBs by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated the presence of free unbound thiols and primary amines on their surface, implying the possibility of further surface modification. Based on the zeta potential measurement, the isoelectric point (IEP) of BSA-SH MBs was determined to be 4.5. The attachments of BSA-SH MBs on alumina, silica, and gold surfaces in different pH environments were carried out with a quartz crystal microbalance with dissipation monitoring (QCM-D), demonstrating the reactivities of BSA-SH MBs. At pH 6, the negatively charged BSA-SH MBs were adsorbed onto the alumina surface by electrostatic interaction. Analogously, at pH 4, the adsorption of the positively charged BSA-SH MBs on the silica surface was confirmed. Compared with the electrostatic interaction, the adsorption of BSA-SH MBs on the gold surface is attributed to the strong gold-thiol bonding effect. This is the first time that a universal approach for stabilizing protein-shelled microbubbles was reported using only one single step of surface treatment of proteins with the Traut's reagent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app