Add like
Add dislike
Add to saved papers

Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate.

Magnesium ammonium phosphate (MAP) crystallization could be utilized for the recovery of phosphorus from wastewater. However, the effectiveness of the recovery is largely determined by the crystallization process, which is very hard to be directly observed. As a result, a specific ultrasonic device was designed to investigate the crystallization characteristics of MAP under various ultrasonic conditions. The results demonstrated that the metastable zone width (MZW) narrowed along with the rising of the ultrasonic power. Similarly, for the 6mM MAP solution, with the ultrasonic power gradually enhanced from 0W to 400W, the induction time was shortened from 340s to 38s. Meanwhile, the crystallization rate was accelerated till the power reached 350W, and then remained a constant value. It can be observed from the scanning electron microscopy (SEM), the MAP crystal became bigger in size as well as the crystal size distribution (CSD) became broad and uneven, with the increase of ultrasonic power. The results indicate that the crystallization process enhanced by power ultrasound could be used as an effective method to eliminate and recover the phosphorus from wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app