Add like
Add dislike
Add to saved papers

Interaction among COX-2, P2Y1 and GPIIIa gene variants is associated with aspirin resistance and early neurological deterioration in Chinese stroke patients.

BMC Neurology 2017 January 10
BACKGROUND: The effect of genetic variants on aspirin resistance (AR) remains controversial. We sought to assess the association of genetic variants with AR and early clinical outcomes in patients with acute ischemic stroke (IS).

METHODS: A total of 850 acute IS patients were consecutively enrolled. Platelet aggregation was measured before and after a 7-10 day aspirin treatment. The sequences of 14 variants of COX-1, COX-2, GPIb, GPIIIa, P2Y1 and P2Y12 were determined using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). The primary outcome was early neurological deterioration (END) within 10 days of admission. The secondary outcome was a composite of early recurrent ischemic stroke (ERIS), myocardial infarction (MI) and death within 10 days of admission.

RESULTS: 175 (20.6%) patients were AR, 45 (5.3%) were aspirin semi-resistant, 121 (14.2%) developed END, 17 (0.2%) had ERIS, 2 (0.2%) died, and 6 (0.7%) had MI. Single locus analysis indicated that only rs1371097 was associated with AR. However, GMDR analysis indicated that the following three sets of gene-gene interactions were significantly associated with AR: rs20417CC/rs1371097TT/rs2317676GG; rs20417CC/rs1371097TT/rs2317676GG; rs20417CC/rs1371097CT/rs2317676AG. END occurred significantly more frequently in patients with AR or high-risk interactive genotypes. Moreover, AR and high-risk interactive genotypes were independently associated with END.

CONCLUSION: Sensitivity of IS patients to aspirin and END may be multifactorial and is not significantly associated with a single gene polymorphism. Combinational analysis may useful for further insight into the genetic risks for AR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app