Add like
Add dislike
Add to saved papers

Ultrafast Dissociation Dynamics of 2-Ethylpyrrole.

To explore the effects of ring substitution on dissociation dynamics, the primary photochemistry of 2-ethylpyrrole was explored using ultrafast ion imaging techniques. Photoexcitation to the S1 state, a πσ* state, in the range from 238 to 265 nm results in cleavage of the N-H bond with an H atom appearance lifetime of ca. 70 fs. The insensitivity of this lifetime to photon energy, combined with a small kinetic isotope effect, suggests that tunneling does not play a major role in N-H bond cleavage. Total kinetic energy release spectra reveal modest vibrational excitation in the radical counter-fragment, increasing with photon energy. At wavelengths less than or equal to 248 nm, an additional low kinetic energy H atom loss mechanism becomes available with an appearance lifetime of ∼1.5 ps, possibly due to the population of higher-lying1 ππ* states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app