JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of Pressure on Dielectric and Frank Elastic Constants of a Material Exhibiting the Twist Bend Nematic Phase.

We report the first investigation on the effect of applied pressure on the now well-known dimer α,ω bis(4,4'-cyanobiphenyl)heptane (CB7CB) that exhibits two types of nematic: the regular uniaxial nematic (N) and the recently discovered twist-bend nematic (NTB ) phase. At atmospheric pressure, the thermal behavior of ε⊥ , the permittivity normal to the director in the N phase decreases on entering the NTB wherein the value represents permittivity orthogonal to the helical axis. Application of pressure initially decreases the magnitude of the change in ε⊥ and with further increase in pressure exhibits an increase in the value. Such a change in the feature of ε⊥ is similar to that obtained at room pressure when the monomeric heptyloxy cyanobiphenyl (7OCB) is doped to CB7CB at a high concentration of 50%. The dielectric anisotropy exhibits a trend reversal with temperature, the extent of which is affected at high pressures. Another salient feature of the study is the effect that pressure has on the Frank bend elastic constant K33 . Over the pressure range studied K33 enhances by a large factor of 5. In contrast, the splay elastic constant exhibits a much smaller change of only 70%. The pressure-temperature phase boundary has a much smaller slope for the N-NTB transformation than for the isotropic-N transition. We propose that all these features can be understood in terms of the relative population of the more energetic horseshoe and lower energy extended conformer adopted by the CB7CB molecule. The extended conformer is favored at lower temperatures or at higher pressures. This argument is validated by X-ray diffraction experiments at atmospheric pressure on the binary mixture of CB7CB and 7OCB, mentioned above.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app