Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Potent Inhibition of Nitric Oxide-Releasing Bifendate Derivatives against Drug-Resistant K562/A02 Cells in Vitro and in Vivo.

Multidrug resistance is a major obstacle to successful chemotherapy for leukemia. In this study, a series of nitric oxide (NO)-releasing bifendate derivatives (7a-n) were synthesized. Biological evaluation indicated that the most active compound (7a) produced relatively high levels of NO and significantly inhibited the proliferation of drug-resistant K562/A02 cells in vitro and in vivo. In addition, 7a induced the mitochondrial tyrosine nitration and the intracellular accumulation of rhodamine 123 by inhibiting P-gp activity in K562/A02 cells. Furthermore, 7a remarkably down-regulated AKT, NF-κB, and ERK activation and HIF-1α expression in K562/A02 cells, which are associated with the tumor cell proliferation and drug resistance. Notably, the antitumor effects were dramatically attenuated by an NO scavenger or elimination of the NO-releasing capability of 7a, indicating that NO produced by 7a contributed to, at least partly, its cytotoxicity against drug-resistant K562/A02 cells. Overall, 7a may be a potential agent against drug-resistant myelogenous leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app