Add like
Add dislike
Add to saved papers

Facile and effective synthesis of adsorbent - utilization of yeast cells immobilized in sodium alginate beads for the adsorption of phosphorus in aqueous solution.

We compared the adsorption efficiency of phosphates onto Ca-alginate immobilized yeast and freely suspended yeast under different conditions of pH and temperature. The results clearly demonstrated that the adsorption efficiency onto Ca-alginate immobilized yeast was better than that of freely suspended yeast, and reached a maximum at pH 9.17 and 35 °C. Scanning electron microscopy was used to characterize the morphology of Ca-alginate immobilized yeast. Fitting the adsorption equilibrium data to existing models showed that the Freundlich isotherm model described the process better than the Langmuir model, and the process of adsorption followed pseudo-first-order kinetics. During the initial period of experiment, external diffusion was a key rate-controlling step, and intraparticle diffusion also contributed to the mass transport. The thermodynamic properties (Gibbs free energy change of -15.143 kJ/mol, enthalpy change of 274.118 kJ/mol, and entropy change of 290 J/(mol K)) indicated that the adsorption process was endothermic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app