Add like
Add dislike
Add to saved papers

Edge states of hydrogen terminated monolayer materials: silicene, germanene and stanene ribbons.

We investigate the energy dispersion of the edge states in zigzag silicene, germanene and stanene nanoribbons with and without hydrogen termination based on a multi-orbital tight-binding model. Since the low buckled structures are crucial for these materials, both the π and σ orbitals have a strong influence on the edge states, different from the case for graphene nanoribbons. The obtained dispersion of helical edge states is nonlinear, similar to that obtained by first-principles calculations. On the other hand, the dispersion derived from the single-orbital tight-binding model is always linear. Therefore, we find that the non-linearity comes from the multi-orbital effects, and accurate results cannot be obtained by the single-orbital model but can be obtained by the multi-orbital tight-binding model. We show that the multi-orbital model is essential for correctly understanding the dispersion of the edge states in tetragen nanoribbons with a low buckled geometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app