Add like
Add dislike
Add to saved papers

Extraction of Thermodynamic Parameters of Protein Unfolding Using Parallelized Differential Scanning Fluorimetry.

Thermodynamic properties of protein unfolding have been extensively studied; however, the methods used have typically required significant preparation time and high protein concentrations. Here we present a facile, simple, and parallelized differential scanning fluorimetry (DSF) method that enables thermodynamic parameters of protein unfolding to be extracted. This method assumes a two-state, reversible protein unfolding mechanism and provides the capacity to quickly analyze the biophysical mechanisms of changes in protein stability and to more thoroughly characterize the effect of mutations, additives, inhibitors, or pH. We show the utility of the DSF method by analyzing the thermal denaturation of lysozyme, carbonic anhydrase, chymotrypsin, horseradish peroxidase, and cellulase enzymes. Compared with similar biophysical analyses by circular dichroism, DSF allows for determination of thermodynamic parameters of unfolding while providing greater than 24-fold reduction in experimental time. This study opens the door to rapid characterization of protein stability on low concentration protein samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app