Add like
Add dislike
Add to saved papers

Rotational Dynamics of Quantum State-Selected Symmetric-Top Molecules in Nonresonant Femtosecond Laser Fields.

Rotational dynamics of quantum state selected and unselected CH3 I molecules in intense femtosecond laser fields has been studied. The orientation and alignment evolutions are derived from a pump-probe measurement and in good agreement with the numerical results from the time-dependent Schrödinger equation (TDSE) calculation. The different rotational transitions through nonresonant Raman process have been assigned from the Fourier analysis of the orientation and alignment revivals. These revivals are derived from a pump-probe measurement and in good agreement with the numerical results from the TDSE calculation. For the molecules in rotational state |1, ±1, ∓1⟩, the transitions can be assigned to ΔJ = ±1, ±2, while for thermally populated molecules, the transitions are ΔJ = ±2. Our results illustrate that the orientation and alignment revivals of the rotational quantum-state-selected molecules give a deep insight into the rotational excitation pathways for the transition of different rotational states of molecules in ultrafast laser fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app