Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Form Matters: Stable Helical Foldamers Preferentially Target Human Monocytes and Granulocytes.

ChemMedChem 2017 Februrary 21
Some hybrid foldamers of various length, all containing the (4R,5S)-4-carboxy-5-methyloxazolidin-2-one (d-Oxd) moiety alternating with an l-amino acid (l-Val, l-Lys, or l-Ala), were prepared in order to study their preferred conformations and to evaluate their biological activity. Surprisingly, only the longer oligomers containing l-Ala fold into well-established helices, whereas all the other oligomers give partially unfolded turn structures. Nevertheless, they all show good biocompatibility, with no detrimental effects up to 64 μm. After equipping some selected foldamers with the fluorescent tag rhodamine B, a quantitative analysis was performed by dose- and time-response fluorescence-activated cell sorting (FACS) assays with human HeLa cells and primary blood lymphocytes, granulocytes, and monocytes. Among the cell types analyzed, the oligomers associated with monocytes and granulocytes with greatest efficacy, still visible after 24 h incubation. This effect is even more pronounced for foldamers that are able to form stable helices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app