Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Topography-associated thermal gradient predicts warming effects on woody plant structural diversity in a subtropical forest.

Scientific Reports 2017 January 10
Understanding global warming effects on forest ecosystems will help policy-makers and forest managers design forest management and biodiversity conservation strategies. We examined the change in woody plant structural diversity in response to topography-associated thermal gradients in a subtropical forest with diverse abundance patterns. We found that energy distribution in a warming trend across slopes had significant effects on woody plant structural diversity. Except for total basal area of the adult trees, plant structural diversity significantly decreased with the increase of heat load. Heat load is significantly and negatively correlated with number of stems, number of species, and the number of stems of the most abundant species (Nmax ) for seedlings, saplings, and individuals of all sizes. For the adult trees, heat load is significantly and positively correlated with number of stems and Nmax , and negatively but not significantly with number of species, indicating that large trees may not be as sensitive as seedlings and saplings to warming. Partial correlation analysis, having controlled for elevation, strengthened those relations in most cases. Our results reveal that warming will increase community productivity by enhancing the growth of large trees, but decrease species diversity and inhibit the regeneration of tree seedlings and saplings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app