Add like
Add dislike
Add to saved papers

Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor.

Hydrothermal carbonization is a thermochemical process that converts wet organic matter into a sterile, high-calorific solid material called hydrochar. This technology is considered an interesting option for low- and middle-income urban settings, often lacking adequate services and high fraction of wet organic waste. The aim of this study was to study the influence of the loading rate (total solid content) and the maximum temperature reached on the resulting energy ratio (ER) of the process and the fuel properties of the obtained hydrochar. Ten experiments were carried out with a standardized biowaste-feedstock. Different solid contents (2.54%, 4.93%, 7.44%, 9.45%, 12.83%, 15.2% by weight) and different targeted maximum temperatures (170°C, 180°C, 190°C, 200°C) were tested. Compared to the feedstock, all resulting hydrochars had an increased higher heating value (HHV) (average of 29.2 MJ/kgdb ) and carbon content (average of 66.9%db ) than the original biowaste (19.3 MJ/kgdb and 46.2%db , respectively). The HHV obtained were similar to those of charcoal (29.6 MJ/kg). Higher solid contents resulted in higher hydrochar yields and carbon efficiencies, whereas higher temperatures resulted in higher carbon content and HHV of the hydrochar. The experiment with the highest solid content (15.2%wt ) achieved an ER > 1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app