Add like
Add dislike
Add to saved papers

Glycated albumin modifies platelet adhesion and aggregation responses.

Platelets 2017 November
A diabetic vasculature is detrimental to cardiovascular health through the actions of advanced glycation end products (AGEs) on endothelial cells and platelets. Platelets activated by AGEs agonize endothelial responses promoting cardiovascular disease (CVD) development. While it has been established that AGEs can alter platelet functions, little is known about the specific platelet pathways that AGEs modify. Therefore, we evaluated the effects of AGEs on specific salient platelet pathways related to CVDs and whether the effects that AGEs elicit are dependent on glycation extent. To accomplish our objective, platelets were incubated with reversibly or irreversibly glycated albumin. A time course for adhesion and aggregation agonist receptor expression was assessed. Optical platelet aggregometry was used to confirm the functional activity of platelets after AGE exposure. In general, platelets subjected to glycated albumin had a significantly enhanced adhesion and aggregation potential. Furthermore, we observed an enhancement in dense body secretion and intracellular calcium concentration. This was especially prevalent for platelets exposed to irreversibly glycated albumin. Additionally, functional aggregation correlated well with receptor expression, suggesting that AGE-induced altered receptor sensitivity translated to altered platelet functions. Our findings indicate that under diabetic vascular conditions platelets become more susceptible to activation and aggregation due to an overall enhanced receptor expression, which may act to promote CVD development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app