Add like
Add dislike
Add to saved papers

Corrosion-Assisted Self-Growth of Au-Decorated ZnO Corn Silks and Their Photoelectrochemical Enhancement.

Modern nanotechnology generates more stringent requirements for the design and synthetic strategy of nanostructural materials. In this work, we demonstrate a novel strategy for the synthesis of "corn silk"-like ZnO hierarchical nanostructures, simplified as ZnO corn silk: silk-like ZnO nanotubes (NTs) with a large length-to-diameter ratio are grown on the top tip of corn-shaped ZnO nanorods (NRs). The synthetic method is unique in that when the ZnO NRs are dipped into the aqueous solution of NaBH4 , the release of Zn2+ and OH- caused by the corrosion of ZnO NRs, as well as the subsequent growth of ZnO NTs, could allow the process to run step-by-step in self-assembly mode. This process is directed and driven by the change in concentrations of hydrogen anion H(s) - induced by NaBH4 , as well as hydroxyl ions (OH- ) induced by the H- formation and hydrolysis of dissociative Zn atoms. The prepared ZnO corn silks exhibit highly enhanced photoelectrochemical (PEC) efficiency after decoration with Au nanoparticles (NPs). ZnO silks act as pathways to facilitate efficient charge transfer, and the Au NP decoration induces the plasmonic effect, causing the hot electrons to inject into ZnO under visible illumination. At the same time, the formation of a Schottky barrier at the Au/ZnO interface can retard the electron-hole recombination. Overall, Au-decorated ZnO corn silk with an increased PEC efficiency represents a promising photoanode material, and the synthesis route developed in the current study is applicable to building hierarchical nanostructures of other materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app