Add like
Add dislike
Add to saved papers

Relighting Photosensitizers by Synergistic Integration of Albumin and Perfluorocarbon for Enhanced Photodynamic Therapy.

Photodynamic therapy (PDT) is hampered by poor water solubility and skin phototoxicity of photosensitizers (PSs). Incorporation of PSs into nanocarrier (Nano-PDT) has been designed to overcome these problems. However, self-quenching of PSs highly condensed in Nano-PDT significantly reduced singlet oxygen (1 O2 ) generation, resulting in unsatisfactory PDT efficacy. Here, we developed a novel tripleffect Nano-PDT, which has a special core-shell nanostructure by synergistic integration of perfluorotributylamine (PFTBA) and human serum albumin (HSA) to improve PDT. It has three mechanisms to relight quenched PSs, thereby generating more 1 O2 . First, PSs uniformly dispersed in the shell, preventing self-quenching caused by π-π stacking. Second, HSA as nanocarrier extends the triplet-state lifetimes of PSs, increasing the amount of 1 O2 . Third, PFTBA as core dissolves and protects1 O2 to extend the duration time of action of 1 O2 . Compared with PS-encapsulated Nano-PDT, the self-quenching of PSs in tripleffect Nano-PDT can be effectively overcome. The fluorescence and 1 O2 generation of PS are increased by approximately 100-fold and 15-fold, respectively. After intravenous injection into tumor-bearing mice, the tumor growth is significantly inhibited, while the PS-encapsulated Nano-PDT has almost no effect. The novel tripleffect Nano-PDT may guide improvement of existing clinical PDT and future PDT design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app