Add like
Add dislike
Add to saved papers

Tight Graph Framelets for Sparse Diffusion MRI q -Space Representation.

In diffusion MRI, the outcome of estimation problems can often be improved by taking into account the correlation of diffusion-weighted images scanned with neighboring wavevectors in q -space. For this purpose, we propose in this paper to employ tight wavelet frames constructed on non-flat domains for multi-scale sparse representation of diffusion signals. This representation is well suited for signals sampled regularly or irregularly, such as on a grid or on multiple shells, in q -space. Using spectral graph theory, the frames are constructed based on quasi-affine systems (i.e., generalized dilations and shifts of a finite collection of wavelet functions) defined on graphs, which can be seen as a discrete representation of manifolds. The associated wavelet analysis and synthesis transforms can be computed efficiently and accurately without the need for explicit eigen-decomposition of the graph Laplacian, allowing scalability to very large problems. We demonstrate the effectiveness of this representation, generated using what we call tight graph framelets , in two specific applications: denoising and super-resolution in q -space using ℓ0 regularization. The associated optimization problem involves only thresholding and solving a trivial inverse problem in an iterative manner. The effectiveness of graph framelets is confirmed via evaluation using synthetic data with noncentral chi noise and real data with repeated scans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app