Add like
Add dislike
Add to saved papers

Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift.

BACKGROUND: Lipid/carbohydrate content and ratio are extremely important when engineering algal cells for liquid biofuel production. However, conventional methods for such determination and quantification are not only destructive and tedious, but also energy consuming and environment unfriendly. In this study, we first demonstrate that Raman spectroscopy is a clean, fast, and accurate method to simultaneously quantify the lipid/carbohydrate content and ratio in living microalgal cells.

RESULTS: The quantification results of both lipids and carbohydrates obtained by Raman spectroscopy showed a linear correspondence with that obtained by conventional methods, indicating Raman can provide a similar accuracy to conventional methods, with a significantly shorter detection time. Furthermore, the subcellular resolution of Raman spectroscopy enabled not only the concentration mapping of lipid/carbohydrate content in single living cells, but also the evaluation of standard deviation between the biomass accumulation levels of individual algal cells.

CONCLUSIONS: In this study, we first demonstrate that Raman spectroscopy can be used for starch quantification in addition to lipid quantification in algal cells. Due to the easiness and non-destructive nature of Raman spectroscopy, it makes a perfect tool for the further study of starch-lipid shift mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app