JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders.

Glucocorticoid hormones (GCs) are critical for survival since they ensure the energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism, and storage. However, to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g., Cushing's syndrome or Addison's disease, are associated with severe alterations of energy metabolism. Corticosteroid-binding globulin (CBG), through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels and their access to target cells. Genetic studies in various species including humans have revealed that CBG is the major factor influencing interindividual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all, of these genetic studies have also provided data linking CBG levels to body composition and insulin levels. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Finally, only male mice have been examined under high-fat diet, while obesity is affecting women even more than men. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app