Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cisplatin-induced necroptosis in TNFα dependent and independent pathways.

Cellular Signalling 2017 Februrary
Cisplatin is a chemotherapeutic drug for treatment of many solid tumors. It has been shown to induce apoptosis and/or necrosis in different types of cancer cells. However, the underlying mechanisms remain elusive. In this study, we provide evidences that cisplatin induces necroptosis in receptor-interacting protein 3 (RIP3)-expressing cell lines, but not in cell lines lacking RIP3 protein expression. Deficiency of core components of necroptotic pathway, RIP1, RIP3, or mixed lineage kinase domain-like protein (MLKL) blocked cisplatin-induced cell death in L929 cells. This phenomenon is dependent on RIP1/RIP3/MLKL necrosome formation and translocation to mitochondria-associated membrane (MAM), but only partially via autocrine production of tumor necrosis factor α (TNFα). Moreover, we demonstrate that the mitochondrial permeability transition pore opening (mPTP) opening and reactive oxygen species (ROS) generation is a critical downstream event of the formation of necrosome in cisplatin-induced necroptosis, which is TNFα independent. Deficiency of cyclophilin-D (CypD) partially reduced cisplatin-induced cell death, indicating CypD mediated-mPTP opening plays an important role during cisplatin-induced necroptosis. Both deletion of CypD and TNFα completely blocked cisplatin-induced cell death, suggesting that cisplatin could induce necroptosis through TNFα dependent and independent pathway. These findings provide new insight into the molecular mechanisms underlying cisplatin-induced necroptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app