Add like
Add dislike
Add to saved papers

Derivation and Internal Validation of a Clinical Prediction Tool for 30-Day Mortality in Lower Gastrointestinal Bleeding.

BACKGROUND: There are limited data to predict which patients with lower gastrointestinal bleeding are at risk for adverse outcomes. We aimed to develop a clinical tool based on admission variables to predict 30-day mortality in lower gastrointestinal bleeding.

METHODS: We used a validated machine learning algorithm to identify adult patients hospitalized with lower gastrointestinal bleeding at an academic medical center between 2008 and 2015. The cohort was split randomly into derivation and validation cohorts. In the derivation cohort, we used multiple logistic regression on all candidate admission variables to create a prediction model for 30-day mortality, using area under the receiving operator characteristic curve and misclassification rate to estimate prediction accuracy. Regression coefficients were used to derive an integer score, and mortality risk associated with point totals was assessed.

RESULTS: In the derivation cohort (n = 4044), 8 variables were most associated with 30-day mortality: age, dementia, metastatic cancer, chronic kidney disease, chronic pulmonary disease, anticoagulant use, admission hematocrit, and albumin. The model yielded a misclassification rate of 0.06 and area under the curve of 0.81. The integer score ranged from -10 to 26 in the derivation cohort, with a misclassification rate of 0.11 and area under the curve of 0.74. In the validation cohort (n = 2060), the score had an area under the curve of 0.72 with a misclassification rate of 0.12. After dividing the score into 4 quartiles of risk, 30-day mortality in the derivation and validation sets was 3.6% and 4.4% in quartile 1, 4.9% and 7.3% in quartile 2, 9.9% and 9.1% in quartile 3, and 24% and 26% in quartile 4, respectively.

CONCLUSIONS: A clinical tool can be used to predict 30-day mortality in patients hospitalized with lower gastrointestinal bleeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app