Add like
Add dislike
Add to saved papers

Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion.

The immobilization method consists of the production magnetite nanoparticles (Fe3O4) by solvothermal treatment of FeCl3 and sodium acetate (NaAc) in the presence of ethylene glycol. Subsequently, the surface of magnetite nanoparticles was modified with a well-known polyphenol tannic acid. Trypsin was covalently immobilized on the tannic acid modified magnetite nanoparticles after exposing the modified nanoparticles to pH 9.4. Then, tryptic digestion of casein by free and immobilized trypsin was carried out for 13h and 1h, respectively. TGA curves, FTIR spectra, and magnetization curves demonstrated the decent amount of trypsin immobilization without compromising the enzyme activity. Digestion efficiency of casein was investigated using liquid chromatography-mass spectrometry (LC-MS/MS) technique. LC-MS chromatograms confirmed the efficient digestion of casein by immobilized trypsin compared to free trypsin owing to prevention of autohydrolysis. Also, the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis confirmed the satisfactory digestion of casein by immobilized trypsin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app