JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form.

Structure 2017 Februrary 8
FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5'-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app