Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of lysine-specific demethylase 1 inhibitor peptide by redox-controlled cleavage of a traceless linker.

We have previously employed cyclization of a linear peptide as a strategy to modulate peptide function and properties, but cleavage to regenerate the linear peptide left parts of the linker structure on the peptide, interfering with its activity. Here, we focused on cyclization of a linear peptide via a "traceless" disulfide-based linkage that would be cleaved and completely removed in a reducing environment, regenerating the original linear peptide without any linker-related structure. Thus, the linker would serve as a redox switch that would be activated in the intracellular environment. We applied this strategy to a lysine-specific demethylase 1 (LSD1) inhibitor peptide 1. The resulting cyclic peptide 2 exhibited approximately 20 times weaker LSD1-inhibitory activity than peptide 1. Upon addition of reducing reagent, the linker was completely removed to regenerate the linear peptide 1, with full restoration of the LSD1-inhibitory activity. In addition, the cyclic peptide was far less susceptible to proteolysis than the linear counterpart. Thus, this switch design not only enables control of functional activity, but also improves stability. This approach should be applicable to a wide range of peptides, and may be useful in the development of peptide pharmaceuticals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app