JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Nutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae .

Genetics 2017 March
Calorie restriction extends life span in organisms as diverse as yeast and mammals through incompletely understood mechanisms.The role of NAD+ -dependent deacetylases known as Sirtuins in this process, particularly in the yeast Saccharomyces cerevisiae , is controversial. We measured chronological life span of wild-type and sir2 Δ strains over a higher glucose range than typically used for studying yeast calorie restriction. sir2 Δ extended life span in high glucose complete minimal medium and had little effect in low glucose medium, revealing a partial role for Sir2 in the calorie-restriction response under these conditions. Experiments performed on cells grown in rich medium with a newly developed genetic strategy revealed that sir2 Δ shortened life span in low glucose while having little effect in high glucose, again revealing a partial role for Sir2 In complete minimal media, Sir2 shortened life span as glucose levels increased; whereas in rich media, Sir2 extended life span as glucose levels decreased. Using a genetic strategy to measure the strength of gene silencing at HML , we determined increasing glucose stabilized Sir2-based silencing during growth on complete minimal media. Conversely, increasing glucose destabilized Sir-based silencing during growth on rich media, specifically during late cell divisions. In rich medium, silencing was far less stable in high glucose than in low glucose during stationary phase. Therefore, Sir2 was involved in a response to nutrient cues including glucose that regulates chronological aging, possibly through Sir2-dependent modification of chromatin or deacetylation of a nonhistone protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app