Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes.

Redox Biology 2017 April
Human age-related diseases, including obesity and type 2 diabetes (T2DM), have long been associated to mitochondrial dysfunction; however, the role for adipose tissue mitochondria in these conditions remains unknown. We have tackled the impact of aging and T2DM on adipocyte mitochondria from obese patients by quantitating not only the corresponding abundance changes of proteins, but also the redox alterations undergone by Cys residues thereof. For that, we have resorted to a high-throughput proteomic approach based on isobaric labeling, liquid chromatography and mass spectrometry. The alterations undergone by the mitochondrial proteome revealed aging- and T2DM-specific hallmarks. Thus, while a global decrease of oxidative phosphorylation (OXPHOS) subunits was found in aging, the diabetic patients exhibited a reduction of specific OXPHOS complexes as well as an up-regulation of the anti-oxidant response. Under both conditions, evidence is shown for the first time of a link between increased thiol protein oxidation and decreased protein abundance in adipose tissue mitochondria. This association was stronger in T2DM, where OXPHOS mitochondrial- vs. nuclear-encoded protein modules were found altered, suggesting impaired mitochondrial protein translocation and complex assembly. The marked down-regulation of OXPHOS oxidized proteins and the alteration of oxidized Cys residues related to protein import through the redox-active MIA (Mitochondrial Intermembrane space Assembly) pathway support that defects in protein translocation to the mitochondria may be an important underlying mechanism for mitochondrial dysfunction in T2DM and physiological aging. The present draft of redox targets together with the quantification of protein and oxidative changes may help to better understand the role of oxidative stress in both a physiological process like aging and a pathological condition like T2DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app