Add like
Add dislike
Add to saved papers

A L1-regularized feature selection method for local dimension reduction on microarray data.

Dimension reduction is a crucial technique in machine learning and data mining, which is widely used in areas of medicine, bioinformatics and genetics. In this paper, we propose a two-stage local dimension reduction approach for classification on microarray data. In first stage, a new L1-regularized feature selection method is defined to remove irrelevant and redundant features and to select the important features (biomarkers). In the next stage, PLS-based feature extraction is implemented on the selected features to extract synthesis features that best reflect discriminating characteristics for classification. The suitability of the proposal is demonstrated in an empirical study done with ten widely used microarray datasets, and the results show its effectiveness and competitiveness compared with four state-of-the-art methods. The experimental results on St Jude dataset shows that our method can be effectively applied to microarray data analysis for subtype prediction and the discovery of gene coexpression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app