Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice.

This study examined the hypothesis that vitamin-D prevents oxidative stress and upregulates glucose metabolism via activating insulin-independent signaling molecules in 3T3-L1 adipocytes and in high fat diet (HFD)-fed mice. To investigate the mechanism 3T3L1 adipocytes were treated with high glucose (HG, 25 mM) and 1,25(OH)2 D3 (1,25-dihydroxyvitamin D3 ) (0-50 nM). Results showed that 1,25(OH)2 D3 supplementation decreased NOX4 expression, ROS production, NF-κB phosphorylation, and increased the expression of Nrf2 and Trx in HG-treated cells. 1,25(OH)2 D3 supplementation upregulated SIRT1 expression and AMPK phosphorylation and stimulated the IRS1/PI3K/PIP3/AKT/PKCζ signaling cascade, GLUT4 expression, and glucose uptake in HG-treated adipocytes. The effect of 1,25(OH)2 D3 on the phosphorylation of both AMPK and IRS1, GLUT4 expression, and glucose uptake was significantly inhibited in SIRT1-knockdown adipocytes. This suggests the role of insulin-independent signaling molecules (SIRT1, AMPK) in mediating the effect of 1,25(OH)2 D3 on the signaling cascade of glucose uptake. In addition, cholecalciferol supplementation significantly upregulated pAMPK, SIRT-1 and GLUT-4 levels in adipose tissue of mice fed with HFD. This study demonstrates a novel molecular mechanism by which vitamin-D can prevent oxidative stress and upregulates glucose uptake via SIRT1/AMPK/IRS1/GLUT4 cascade in HG-treated adipocytes and in adipose tissue of HFD diabetic mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app