Add like
Add dislike
Add to saved papers

Impact of Mutations on the Higher Order Structure and Activity of a Recombinant Uricase.

This study explores the structural and functional changes associated with a low-temperature thermal transition of 2 engineered bacterial uricase mutants. Uricase has a noncovalent homotetrameric structure, with 4 active sites located at the interface of subunits. Using differential scanning calorimetry, a low-temperature transition was identified at 42°C for mutant A and at 33°C for mutant B. This transition was stabilized by the uricase inhibitor, oxonic acid, suggesting a strong structural relationship to the active site. For mutant B, there was a reversible loss of enzymatic activity above the low-temperature transition. Spectroscopic measurements demonstrated that there was also a reversible loss of secondary and tertiary structures and an increase in surface hydrophobicity. However, the hydrophobic core environment and the tetrameric structure were not altered over the low-temperature transition suggesting that the changes occurred primarily at the surface of the enzyme. The protein became aggregation-prone at temperatures approaching the cluster of higher-temperature melting transitions at 84°C, indicating these transitions represent a global unfolding of the protein. Our findings shed light on the structural changes that affect the uricase mechanism of action and provide new insights into how enzyme therapeutic development may be approached.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app