Add like
Add dislike
Add to saved papers

Evaluation of Myocardial Strain in Patients With Amyloidosis Using Cardiac Magnetic Resonance Feature Tracking.

PURPOSE: To study the use of cardiac magnetic resonance (CMR) feature tracking technique in evaluation of myocardial amyloidosis.

MATERIALS AND METHODS: CMR scans of 28 patients with biopsy proven myocardial amyloidosis and 35 controls were reviewed. Conventional short axis, vertical long axis, and 4-chamber cine steady-state free precession images from CMR scans were used to generate radial, circumferential, and longitudinal myocardial strain maps using feature tracking software. Global and regional peak radial, circumferential, and longitudinal strain values were computed.

RESULTS: There were significant decreases in radial, circumferential, and longitudinal strains in patients with myocardial amyloidosis globally and across layers (all P < 0.001). Strain was relatively preserved for the apex and most affected for the basal level. The area under the receiver operating characteristic curve for base peak radial, circumferential, and longitudinal strain 0.899, 0.884, and 0.866 and cut offs of 22.9, -13.3, and -10.9, respectively, were determined by receiver operating characteristic analysis. CMR feature tracking strain analysis of base-level strain parameters was able to differentiate patients with myocardial amyloidosis from those without myocardial amyloid with high sensitivity (82.5%) and specificity (82.9%) particularly for radial strain. The maximum sensitivity (89.3%) was achieved if any of the 3 parameters were abnormal, and the maximum specificity (88.6%) when all 3 parameters were abnormal.

CONCLUSION: Myocardial amyloidosis produces significant changes in regional and global strain parameters, and the peak radial and circumferential strain are the most affected at the basal layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app