Add like
Add dislike
Add to saved papers

Direct observation of the conformational transitions of single pyridine molecules on a Ag(110) surface induced by long-range repulsive intermolecular interactions.

The transition between two conformations of pyridine molecules adsorbed on a Ag(110) surface at 13 K was investigated by performing single-molecule manipulation at a very low coverage and the track-imaging of pyridines for various surface coverages using a variable low-temperature scanning tunneling microscope. A single tilted conformer was converted to an upright conformer when another coadsorbed tilted pyridine molecule approached to within ∼2 nm. The conversion probability depends on the molecular separation. The tilted conformers that are prevalent at a very low coverage were converted to upright conformers with an increasing surface coverage. The minimum molecular separation before this transition is induced was determined to be 2.2 nm using molecular track-imaging and statistical analysis of the pyridine separation as a function of the molecular coverage. The conformation transition was attributed to substrate-mediated long-range repulsive interactions between the pyridine molecules, which are produced by charge redistribution that occurs upon pyridine adsorption on the silver surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app