Add like
Add dislike
Add to saved papers

Astrocytic IP 3 Rs: Contribution to Ca 2+ signalling and hippocampal LTP.

Glia 2017 March
Astrocytes regulate hippocampal synaptic plasticity by the Ca2+ dependent release of the N-methyl d-aspartate receptor (NMDAR) co-agonist d-serine. Previous evidence indicated that d-serine release would be regulated by the intracellular Ca2+ release channel IP3 receptor (IP3 R), however, genetic deletion of IP3 R2, the putative astrocytic IP3 R subtype, had no impact on synaptic plasticity or transmission. Although IP3 R2 is widely believed to be the only functional IP3 R in astrocytes, three IP3 R subtypes (1, 2, and 3) have been identified in vertebrates. Therefore, to better understand gliotransmission, we investigated the functionality of IP3 R and the contribution of the three IP3 R subtypes to Ca2+ signalling. As a proxy for gliotransmission, we found that long-term potentiation (LTP) was impaired by dialyzing astrocytes with the broad IP3 R blocker heparin, and rescued by exogenous d-serine, indicating that astrocytic IP3 Rs regulate d-serine release. To explore which IP3 R subtypes are functional in astrocytes, we used pharmacology and two-photon Ca2+ imaging of hippocampal slices from transgenic mice (IP3 R2-/- and IP3 R2-/- ;3-/- ). This approach revealed that underneath IP3 R2-mediated global Ca2+ events are an overlooked class of IP3 R-mediated local events, occurring in astroglial processes. Notably, multiple IP3 Rs were recruited by high frequency stimulation of the Schaffer collaterals, a classical LTP induction protocol. Together, these findings show the dependence of LTP and gliotransmission on Ca2+ release by astrocytic IP3 Rs. GLIA 2017;65:502-513.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app