Add like
Add dislike
Add to saved papers

Identification of highly connected hub genes in the protective response program of human macrophages and microglia activated by alpha B-crystallin.

Glia 2017 March
The glial stress protein alpha B-crystallin (HSPB5) is an endogenous agonist for Toll-like receptor 2 in CD14+ cells. Following systemic administration, HSPB5 acts as a potent inhibitor of neuroinflammation in animal models and reduces lesion development in multiple sclerosis patients. Here, we show that systemically administered HSPB5 rapidly crosses the blood-brain barrier, implicating microglia as additional targets for HSPB5 along with peripheral monocytes and macrophages. To compare key players in the HSPB5-induced protective response of human macrophages and microglia, we applied weighted gene co-expression network analysis on transcript expression data obtained 1 and 4 h after activation. This approach identified networks of genes that are co-expressed in all datasets, thus reducing the complexity of the nonsynchronous waves of transcripts that appear after activation by HSPB5. In both cell types, HSPB5 activates a network of highly connected genes that appear to be functionally equivalent and consistent with the therapeutic effects of HSPB5 in vivo, since both networks include factors that suppress apoptosis, the production of proinflammatory factors, and the development of adaptive immunity. Yet, hub genes at the core of the network in either cell type were strikingly different. They prominently feature the well-known tolerance-promoting programmed-death ligand 1 as a key player in the macrophage response to HSPB5, and the immune-regulatory enzyme cyclooxygenase-2 (COX-2) in that of microglia. This latter finding indicates that despite its reputation as a potential target for nonsteroidal anti-inflammatory drugs, microglial COX-2 plays a central role in the therapeutic effects of HSPB5 during neuroinflammation. GLIA 2017;65:460-473.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app