Add like
Add dislike
Add to saved papers

A study of oxidative stress in neonates delivered through meconium-stained amniotic fluid.

To estimate the levels of malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in cord blood plasma of newborns born through meconium-stained amniotic fluid (MSAF) and also to find out the correlation between their levels with birth weight and gestation, we measured the cord blood plasma levels of MDA and 8-OH-dG in 59 newborns born through MSAF and 50 newborns born through clear liquor. The levels of cord blood plasma MDA and 8-OH-dG were significantly higher in full-term and late-preterm newborns born through MSAF. On further comparison, it was found that both full-term and late-preterm intrauterine growth restricted (IUGR) neonates had higher levels of these markers as compared to babies born as appropriate for gestational age (AGA) through MSAF. Plasma levels of MDA and 8-OH-dG were significantly correlated with birth weight even after controlling the relationship with gestational age for all cases as well as all full-term cases. These markers are also significantly correlated to each other.

CONCLUSIONS: The present study suggest that the neonates born through MSAF experience higher degrees of oxidative stress, as evidenced by increased levels of cord blood plasma MDA and 8-OH-dG. What is known: • Aspirated meconium has been found to induce free radical generation and cellular damage in animal studies. • Its role in free radical generation and oxidative damage in human neonates is scarce. What is new: • Neonates born through meconium-stained amniotic fluid experience significant oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app