Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Loss of N -Acetylgalactosaminyltransferase-4 Orchestrates Oncogenic MicroRNA-9 in Hepatocellular Carcinoma.

Deregulated expression of N -acetylgalactosaminyltransferases (GALNTs), which is responsible for the initial step of mucin-type O -glycosylation, could produce abnormal truncated O -glycans and thereby exert pivotal functions during malignant transformation. GALNT4 is one of the few isoforms preferring to catalyze partial GalNAc-glycosylated substrates and modify the sites not utilized by other known GALNTs. This study aims to evaluate the impact of GALNT4 expression on malignant transformation of hepatocellular carcinoma (HCC). Immunohistochemistry and in situ hybridization analysis were performed to assess GALNT4 and miR-9 level in clinical specimens, respectively. GALNT4 expression is markedly repressed in primary HCC tissues, and reduced expression of GALNT4 is significantly associated with adverse survival of patients with HCC. Functional investigations demonstrate that repressed GALNT4 could promote migration, invasion, anoikis resistance, and stemness of HCC cells in vitro as well as tumor growth in vivo The wild-type GALNT4 could modify O -linked glycosylation on EGFR and thus modulate the activity of EGFR. A luciferase activity assay further identified microRNA-9 (miR-9) as the crucial specific arbitrator for GALNT4 expression in HCC cells. Furthermore, restoring GALNT4 expression attenuates miR-9-mediated oncogenic functions. Kaplan-Meier survival analysis indicates that the miR-9/GALNT4 expression signature yields promising prognostic significance to refine the risk stratification of patients with HCC. In conclusion, this study establishes the miR-9/GALNT4 axis as a potential adverse prognostic factor and therapeutic target for HCC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app