JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxidative stress biomarkers and their relationship with cytokine concentrations in overweight/obese pregnant women and their neonates.

BMC Immunology 2017 January 8
BACKGROUND: Oxidative damage present in obese/overweight mothers may lead to further oxidative stress conditions or inflammation in maternal and cord blood samples. Thirty-four pregnant women/newborn pairs were included in this study to assess the presence of oxidative stress biomarkers and their relationship with serum cytokine concentrations. Oxidative stress biomarkers and antioxidant enzymes were compared between the mother/offspring pairs. The presence of 27 cytokines was measured in maternal and cord blood samples. Analyses were initially performed between all mothers and newborns and later between normal weight and mothers with overweight and obesity, and diabetic/non-diabetic women.

RESULTS: Significant differences were found in biomarker concentrations between mothers and newborns. Additionally, superoxide-dismutase activity was higher in pre-pregnancy overweight mothers compared to those with normal weight. Activity for this enzyme was higher in neonates born from mothers with normal pregestational weight compared with their mothers. Nitrites in overweight/obese mothers were statistically lower than in their offspring. Maternal free fatty acids, nitrites, carbonylated proteins, malondialdehyde and superoxide dismutase predicted maternal serum concentrations of IL-4, IL-13, IP-10 and MIP-1β. Arginase activity in maternal plasma was related to decreased concentrations of IL-4 and IL-1β in cord arterial blood. Increased maternal malondialdehyde plasma was associated with higher levels of IL-6 and IL-7 in the offspring.

CONCLUSIONS: Oxidative stress biomarkers differ between mothers and offspring and can predict maternal and newborn cytokine concentrations, indicating a potential role for oxidative stress in foetal metabolic and immunologic programming. Moreover, maternal obesity and diabetes may affect maternal microenvironments, and oxidative stress related to these can have an impact on the placenta and foetal growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app