Add like
Add dislike
Add to saved papers

Annexin A8 promotes VEGF-A driven endothelial cell sprouting.

The physiological and pathological process of angiogenesis relies on orchestrated endothelial cell (EC) adhesion, migration and formation of new vessels. Here we report that human umbilical vein endothelial cells (HUVECs) deficient in Annexin A8 (AnxA8), a member of the annexin family of Ca2+ - and membrane binding proteins, are strongly deficient in their ability to sprout in response to vascular endothelial growth factor (VEGF)-A, and are strongly impaired in their ability to migrate and adhere to β1 integrin-binding extracellular matrix (ECM) proteins. We find that these cells are defective in the formation of complexes containing the tetraspanin CD63, the main VEGF-A receptor VEGFR2, and the β1 integrin subunit, on the cell surface. We observe that upon VEGF-A activation of AnxA8-depleted HUVECs, VEGFR2 internalization is reduced, phosphorylation of VEGFR2 is increased, and the spatial distribution of Tyr577-phosphorylated focal adhesion kinase (pFAK577) is altered. We conclude that AnxA8 affects CD63/VEGFR2/β1 integrin complex formation, leading to hyperactivation of the VEGF-A signal transduction pathway, and severely disturbed VEGF-A-driven angiogenic sprouting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app