Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Measuring Nitrite and Nitrate, Metabolites in the Nitric Oxide Pathway, in Biological Materials using the Chemiluminescence Method.

Nitric oxide (NO) is one of the main regulator molecules in vascular homeostasis and also a neurotransmitter. Enzymatically produced NO is oxidized into nitrite and nitrate by interactions with various oxy-heme proteins and other still not well known pathways. The reverse process, reduction of nitrite and nitrate into NO had been discovered in mammals in the last decade and it is gaining attention as one of the possible pathways to either prevent or ease a whole range of cardiovascular, metabolic and muscular disorders that are thought to be associated with decreased levels of NO. It is therefore important to estimate the amount of NO and its metabolites in different body compartments - blood, body fluids and the various tissues. Blood, due to its easy accessibility, is the preferred compartment used for estimation of NO metabolites. Due to its short lifetime (few milliseconds) and low sub-nanomolar concentration, direct reliable measurements of blood NO in vivo present great technical difficulties. Thus NO availability is usually estimated based on the amount of its oxidation products, nitrite and nitrate. These two metabolites are always measured separately. There are several well established methods to determine their concentrations in biological fluids and tissues. Here we present a protocol for chemiluminescence method (CL), based on spectrophotometrical detection of NO after nitrite or nitrate reduction by tri-iodide or vanadium(III) chloride solutions, respectively. The sensitivity for nitrite and nitrate detection is in low nanomolar range, which sets CL as the most sensitive method currently available to determine changes in NO metabolic pathways. We explain in detail how to prepare samples from biological fluids and tissues in order to preserve original amounts of nitrite and nitrate present at the time of collection and how to determine their respective amounts in samples. Limitations of the CL technique are also explained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app