JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Induction and Assessment of Exertional Skeletal Muscle Damage in Humans.

Contraction-induced muscle damage via voluntary eccentric (lengthening) contractions offers an excellent model for studying muscle adaptation and recovery in humans. Herein we discuss the design of an eccentric exercise protocol to induce damage in the quadriceps muscles, marked by changes in strength, soreness, and plasma creatine kinase levels. This method is simple, ethical, and widely applicable since it is performed in human participants and eliminates the interspecies translation of the results. Subjects perform 300 maximal eccentric contractions of the knee extensor muscles at a speed of 120°/sec on an isokinetic dynamometer. The extent of the damage is measurable using relatively non-invasive isokinetic and isometric measures of strength loss, soreness, and plasma creatine kinase levels over several days following the exercise. Therefore, its application can be directed to specific populations in an attempt to identify mechanisms for muscle adaptation and regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app