JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Repeated anodal transcranial direct current stimulation induces neural plasticity-associated gene expression in the rat cortex and hippocampus.

BACKGROUND: Anodal transcranial direct current stimulation (A-tDCS) induces a long-lasting increase in cortical excitability that can increase gene transcription in the brain.

OBJECTIVE: The purpose of this study was to evaluate the expression of genes related to activity-dependent neuronal plasticity in the sensorimotor cortex and hippocampus of young Sprague-Dawley rats following A-tDCS.

METHODS: We applied A-tDCS over the right sensorimotor cortex epicranially with a circular electrode (3 mm diameter) at 250 μA for 20 min per day for 7 consecutive days. Levels of mRNA for brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), synapsin I, Ca2+/calmodulin-dependent protein kinase II (CaMKII), activity-regulated cytoskeleton-associated protein (Arc), and c-Fos were analyzed using SYBR Green quantitative real-time polymerase chain reaction (PCR).

RESULTS: We found that 7 days of unilateral A-tDCS resulted in significant increases in transcription of all plasticity-related genes tested in the ipsilateral cortex. Daily A-tDCS also resulted in a significant increase in c-Fos mRNA in the ipsilateral hippocampus.

CONCLUSION: These results indicate that altered expression of plasticity-associated genes in the cortex and hippocampus is a molecular substrate of A-tDCS-induced neural plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app